Fluvastatin Sodium Ameliorates Obesity through Brown Fat Activation

Author:

Yin Na,Zhang Hanlin,Ye Rongcai,Dong Meng,Lin Jun,Zhou Huiqiao,Huang Yuanyuan,Chen Li,Jiang Xiaoxiao,Nagaoka Kentaro,Zhang ChuanhaiORCID,Jin Wanzhu

Abstract

Brown adipose tissue (BAT), an organ that burns energy through uncoupling thermogenesis, is a promising therapeutic target for obesity. However, there are still no safe anti-obesity drugs that target BAT in the market. In the current study, we performed large scale screening of 636 compounds which were approved by Food and Drug Administration (FDA) to find drugs that could significantly increase uncoupling protein 1 (UCP1) mRNA expression by real-time PCR. Among those UCP1 activators, most of them were antibiotics or carcinogenic compounds. We paid particular attention to fluvastatin sodium (FS), because as an inhibitor of the cellular hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase, FS has already been approved for treatment of hypercholesteremia. We found that in the cellular levels, FS treatment significantly increased UCP1 expression and BAT activity in human brown adipocytes. Consistently, the expression of oxidative phosphorylation-related genes was significantly increased upon FS treatment without differences in adipogenic gene expression. Furthermore, FS treatment resisted to high-fat diet (HFD)-induced body weight gain by activating BAT in the mice model. In addition, administration of FS significantly increased energy expenditure, improved glucose homeostasis and ameliorated hepatic steatosis. Furthermore, we reveal that FS induced browning in subcutaneous white adipose tissue (sWAT) known to have a beneficial effect on energy metabolism. Taken together, our results clearly demonstrate that as an effective BAT activator, FS may have great potential for treatment of obesity and related metabolic disorders.

Funder

National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diagnosis and Non-Invasive Treatment of Obesity in Adults with Type 2 Diabetes Mellitus: A Review of Guidelines;Journal of Clinical Medicine;2023-06-30

2. Pantothenate protects against obesity via brown adipose tissue activation;American Journal of Physiology-Endocrinology and Metabolism;2022-07-01

3. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity;Molecular Therapy - Methods & Clinical Development;2022-06

4. Jinlida Granules Reduce Obesity in db/db Mice by Activating Beige Adipocytes;BioMed Research International;2022-05-19

5. Chronic hindbrain administration of oxytocin elicits weight loss in male diet-induced obese mice;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3