Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends

Author:

Khan T. M. YunusORCID,Badruddin Irfan AnjumORCID,Soudagar Manzoore Elahi M.ORCID,Khandal Sanjeev V.ORCID,Kamangar Sarfaraz,Mokashi Imran,Mujtaba M. A.ORCID,Hossain NaziaORCID

Abstract

Biodiesel is a seemingly suitable alternative substitute for conventional fossil fuels to run a diesel engine. In the first part of the study, the production of biodiesel by modified direct transesterification (MDT) is reported. An enhancement in the biodiesel yield with a considerable reduction in reaction time with the MDT method was observed. The required duration for diesel and biodiesel blending was minimized including glycerol separation time from biodiesel in the MDT method. The development in the automotive sector mainly focuses on the design of an efficient, economical, and low emission greenhouse gas diesel engine. In the current experimental work Ceiba pentandra/Nigella sativa and diesel blends (CPB10 and NSB10) were used to run the diesel engine. A variety of approaches were implemented to improve the engine performance for these combinations of fuels. The fuel injector opening pressure (IOP) was set at 240 bar, the torriodal re-entrant combustion chamber (TRCC) having a six-hole injector with a 0.2 mm orifice diameter each, provided better brake thermal efficiency (BTE) with lower emissions compared with the hemispherical combustion chamber (HCC) and trapezoidal combustion chamber (TCC) for both CPB10 and NSB10. CPB10 showed better performance compared with NSB10. A maximum BTE of 29.1% and 28.6% were achieved with CPB10 and NSB10, respectively, at all optimized conditions. Diesel engine operation with CPB10 and NSB10 at 23° bTDC fuel injection timing, and 240 bar IOP with TRCC can yield better results, close to a diesel run engine at 23° bTDC fuel injection timing, and 205 bar IOP with HCC.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biodiesel implementation in Indonesia: Experiences and future perspectives;Renewable and Sustainable Energy Reviews;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3