A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat

Author:

Reyes-Lúa AdrianaORCID,Straus JulianORCID,Skjervold Vidar T.ORCID,Durakovic GoranORCID,Nordtvedt Tom StåleORCID

Abstract

Low temperature industrial surplus heat represents a major energy source that is currently only rarely utilized due to its low quality. An agricluster allows for the leveraging of this low-quality heat and, hence, may improve the overall energy efficiency. This paper presents the novel concept of an agricluster driven by available surplus heat from industrial processes. We propose the integration of greenhouse production, insect rearing, fish rearing, and drying of seaweed using low temperature surplus heat from the aluminum industry. Each of these processes is already used in or investigated for utilization of surplus heat and partly coupled with other processes, such as in aquaponics. However, the integration of all processes in an agricluster—as proposed in this paper—may result in improved utilization of the surplus heat due to the different seasonality of the heat demand. The potential synergies of this integration approach are discussed in this paper. Furthermore, waste from one process can be utilized as an input stream to other processes, reducing the demand for external material input to the system. The proposed concept of an agricluster is especially interesting for the Nordic countries, as they are dependant on fresh food imports due to the low outside temperatures.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference158 articles.

1. Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency;Off. J. Eur. Union,2018

2. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3