Quantification of the Uncertainty in Ultrasonic Wave Speed in Concrete: Application to Temperature Monitoring with Embedded Transducers

Author:

Hariri Rouba1ORCID,Chaix Jean-Francois2ORCID,Shokouhi Parisa3ORCID,Garnier Vincent2,Saïdi-Muret Cécile2,Durand Olivier1,Abraham Odile1ORCID

Affiliation:

1. Univ Gustave Eiffel, GERS-GeoEND, F-44344 Bouguenais, France

2. Aix-Marseille Université, CNRS, Centrale Méditerranée, LMA UMR7031, 13625 Aix-en-Provence, France

3. Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

This article presents an overall examination of how small temperature fluctuations affect P-wave velocity (Vp) measurements and their uncertainties in concrete using embedded piezoelectric transducers. This study highlights the fabrication of custom transducers tailored for long-term concrete monitoring. Accurate and reliable estimation of ultrasonic wave velocities is challenging, since they can be impacted by multiple experimental and environmental factors. In this work, a reliable methodology incorporating correction models is introduced for the quantification of uncertainties in ultrasonic absolute and relative velocity measurements. The study identifies significant influence quantities and suggests uncertainty estimation laws, enhancing measurement accuracy. Determining the onset time of the signal is very time-consuming if the onset is picked manually. After testing various methods to pinpoint the onset time, we selected the Akaike Information Criterion (AIC) due to its ability to produce sufficiently reliable results. Then, signal correlation was used to determine the influence of temperature (20 °C to 40 °C) on Vp in different concrete samples. This technique proved effective in evaluating velocity changes, revealing a persistent velocity decrease with temperature increases for various concrete compositions. The study demonstrated the capability of ultrasonic measurements to detect small variations in the state of concrete under the influence of environmental variables like temperature, underlining the importance of incorporating all influencing factors.

Funder

French National Research Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3