Infrared and Harsh Light Visible Image Fusion Using an Environmental Light Perception Network

Author:

Yan Aiyun1,Gao Shang1ORCID,Lu Zhenlin2ORCID,Jin Shuowei1,Chen Jingrong1

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110167, China

2. Beijing Microelectronics Technology Institute, Beijing 100076, China

Abstract

The complementary combination of emphasizing target objects in infrared images and rich texture details in visible images can effectively enhance the information entropy of fused images, thereby providing substantial assistance for downstream composite high-level vision tasks, such as nighttime vehicle intelligent driving. However, mainstream fusion algorithms lack specific research on the contradiction between the low information entropy and high pixel intensity of visible images under harsh light nighttime road environments. As a result, fusion algorithms that perform well in normal conditions can only produce low information entropy fusion images similar to the information distribution of visible images under harsh light interference. In response to these problems, we designed an image fusion network resilient to harsh light environment interference, incorporating entropy and information theory principles to enhance robustness and information retention. Specifically, an edge feature extraction module was designed to extract key edge features of salient targets to optimize fusion information entropy. Additionally, a harsh light environment aware (HLEA) module was proposed to avoid the decrease in fusion image quality caused by the contradiction between low information entropy and high pixel intensity based on the information distribution characteristics of harsh light visible images. Finally, an edge-guided hierarchical fusion (EGHF) module was designed to achieve robust feature fusion, minimizing irrelevant noise entropy and maximizing useful information entropy. Extensive experiments demonstrate that, compared to other advanced algorithms, the method proposed fusion results contain more useful information and have significant advantages in high-level vision tasks under harsh nighttime lighting conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3