Multilayer Perceptron-Based Wearable Exercise-Related Heart Rate Variability Predicts Anxiety and Depression in College Students

Author:

Li Xiongfeng1,Zou Limin2,Li Haojie3ORCID

Affiliation:

1. Department of Physical Educantion, Xinzhou Normal University, Xinzhou 034000, China

2. College of Physical Educantion, Jinggangshan University, Ji’an 343009, China

3. School of Physical Educantion and Sports, Beijing Normal University, Beijing 100875, China

Abstract

(1) Background: This study aims to investigate the correlation between heart rate variability (HRV) during exercise and recovery periods and the levels of anxiety and depression among college students. Additionally, the study assesses the accuracy of a multilayer perceptron-based HRV analysis in predicting these emotional states. (2) Methods: A total of 845 healthy college students, aged between 18 and 22, participated in the study. Participants completed self-assessment scales for anxiety and depression (SAS and PHQ-9). HRV data were collected during exercise and for a 5-min period post-exercise. The multilayer perceptron neural network model, which included several branches with identical configurations, was employed for data processing. (3) Results: Through a 5-fold cross-validation approach, the average accuracy of HRV in predicting anxiety levels was 89.3% for no anxiety, 83.6% for mild anxiety, and 74.9% for moderate to severe anxiety. For depression levels, the average accuracy was 90.1% for no depression, 84.2% for mild depression, and 82.1% for moderate to severe depression. The predictive R-squared values for anxiety and depression scores were 0.62 and 0.41, respectively. (4) Conclusions: The study demonstrated that HRV during exercise and recovery in college students can effectively predict levels of anxiety and depression. However, the accuracy of score prediction requires further improvement. HRV related to exercise can serve as a non-invasive biomarker for assessing psychological health.

Funder

Humanities and Social Sciences Research Program for Jiangxi Universities

Shanxi Provincial Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3