A Pump-Controlled Circuit for Single-Rod Cylinders that Incorporates Limited Throttling Compensating Valves

Author:

Imam Ahmed,Rafiq Moosa,Jalayeri Ehsan,Sepehri Nariman

Abstract

Valve-controlled hydraulic actuation systems are favored in many applications due to their fast response, high power-to-weight ratio, and stability under variable working conditions. Efficiency, however, is the main disadvantage of these systems. Pump-controlled hydraulic actuations, on the other hand, eliminate energy losses in throttling valves and require less cooling. Furthermore, they inherently hold the ability to recover energy from assistive loads. Pump-controlled circuits for double-rod cylinders are well developed and are implemented in many industrial applications, including aviation. However, pump-controlled circuits for single-rod cylinders usually experience performance issues during specific modes of operation. In this paper, a new circuit using two valves to compensate for the differential flow of single-rod actuators is proposed. The compensating valves provide limited throttling over the differential flow only in critical operating regions to alleviate unwanted velocity oscillations. They have a minimum throttling effect in all other operating regions to preserve the efficiency. The new circuit has been experimentally evaluated. Its performance has also been compared with three other previously proposed circuits. The proposed circuit displays an improved performance, besides being capable of energy regeneration.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3