Efficient Privacy-Preserving Data Sharing for Fog-Assisted Vehicular Sensor Networks

Author:

Ming YangORCID,Yu XiaopengORCID

Abstract

Vehicular sensor networks (VSNs) have emerged as a paradigm for improving traffic safety in urban cities. However, there are still several issues with VSNs. Vehicles equipped with sensing devices usually upload large amounts of data reports to a remote cloud center for processing and analyzing, causing heavy computation and communication costs. Additionally, to choose an optimal route, it is required for vehicles to query the remote cloud center to obtain road conditions of the potential moving route, leading to an increased communication delay and leakage of location privacy. To solve these problems, this paper proposes an efficient privacy-preserving data sharing (EP 2 DS) scheme for fog-assisted vehicular sensor networks. Specifically, the proposed scheme utilizes fog computing to provide local data sharing with low latency; furthermore, it exploits a super-increasing sequence to format the sensing data of different road segments into one report, thus saving on the resources of communication and computation. In addition, using the modified oblivious transfer technology, the proposed scheme can query the road conditions of the potential moving route without disclosing the query location. Finally, an analysis of security suggests that the proposed scheme can satisfy all the requirements for security and privacy, with the evaluation results indicating that the proposed scheme leads to low costs in computation and communication.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3