Abstract
At low frequencies, in thin plates the phase velocity of the guided A0 mode can become slower than that of the ultrasound velocity in air. Such waves do not excite leaky waves in the surrounding air, and therefore, it is impossible to excite and receive them by conventional air-coupled methods. The objective of this research was the development of an air-coupled technique for the reception of slow A0 mode in thin plastic films. This study demonstrates the feasibility of picking up a subsonic A0 mode in plastic films by air-coupled ultrasonic arrays. The air-coupled reception was based on an evanescent wave in air accompanying the propagating A0 mode in a film. The efficiency of the reception was enhanced by using a virtual array which was arranged from the data collected by a single air-coupled receiver. The signals measured at the points corresponding to the positions of the phase-matched array were recorded and processed. The transmitting array excited not only the A0 mode in the film, but also a direct wave in air. This wave propagated at ultrasound velocity in air and was faster than the evanescent wave. For efficient reception of the A0 mode, the additional signal-processing procedure based on the application of the 2D Fourier transform in a spatial–temporal domain. The obtained results can be useful for the development of novel air-coupled ultrasonic non-destructive testing techniques.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献