Predicting the Potency of Anti-Alzheimer’s Drug Combinations Using Machine Learning

Author:

Anastasio Thomas J.

Abstract

Clinical trials of single drugs intended to slow the progression of Alzheimer’s Disease (AD) have been notoriously unsuccessful. Combinations of repurposed drugs could provide effective treatments for AD. The challenge is to identify potentially effective combinations. To meet this challenge, machine learning (ML) was used to extract the knowledge from two leading AD databases, and then “the machine” predicted which combinations of the drugs in common between the two databases would be the most effective as treatments for AD. Specifically, three-layered artificial neural networks (ANNs) with compound, gated units in their internal layer were trained using ML to predict the cognitive scores of participants, separately in either database, given other data fields including age, demographic variables, comorbidities, and drugs taken. The predictions from the separately trained ANNs were statistically highly significantly correlated. The best drug combinations, jointly determined from both sets of predictions, were high in nonsteroidal anti-inflammatory drugs; anticoagulant, lipid-lowering, and antihypertensive drugs; and female hormones. The results suggest that the neurodegenerative processes that underlie AD and other dementias could be effectively treated using a combination of repurposed drugs. Predicted drug combinations could be evaluated in clinical trials.

Funder

Illinois Department of Public Health

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence and Technology Collaboratories: Innovating aging research and Alzheimer's care;Alzheimer's & Dementia;2024-02-07

2. Computer-Aided Drug Design towards New Psychotropic and Neurological Drugs;Molecules;2023-01-30

3. Applications of artificial intelligence in dementia research;Cambridge Prisms: Precision Medicine;2022-12-06

4. Disease Based Computational Drug Repurposing: A Review;2021 5th International Conference on Information Systems and Computer Networks (ISCON);2021-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3