Effect of Vibrations, Displacement, Pressure, Temperature and Humidity on the Resistance and Impedance of the Shockproof Resistors Based on Rubber and Jelly (NiPc–CNT–Oil) Composites

Author:

Chani Muhammad Tariq SaeedORCID,Karimov Khasan S.,Asiri Abdullah M.ORCID,Rahman Mohammed M.ORCID,Kamal Tahseen

Abstract

Here, we present the design, fabrication and characterization of shockproof rubber–jelly (NiPc–CNT–oil) composite-based resistors. To fabricate the resistors, gels of CNT and NiPc with edible oil were prepared and deposited on a flexible rubber substrate using rubbing-in technique. The devices’ resistance and impedance were investigated under the effect of pressure, displacement, humidity, temperature and mechanical vibrations. The resistance and the impedance decreased, on average, by 1.08 times under the effect of pressure (up to 850 gf/cm2) and by 1.04 times under the effect of displacement (up to 50 µm). Accordingly, upon increasing the humidity from 60% to 90% RH, the resistance and impedance decreased by up to 1.04 times, while upon increasing the temperature from 25 °C to 43 °C, the resistance and impedances also decreased by up to 1.05 times. Moreover, under the effect of vibration, a decrease in resistance and impedance, by up to 1.03 times, was observed. The investigated samples can potentially be used as prototypes for the development of shockproof jelly electronic-based devices in particular resistors. The technological achievement in the fabrication of these devices is the use of edible organic oil, which allows for the fabrication of uniform jelly films of organic materials that cannot be realized simply by mixing “dry” ingredients. Especially, we highlight that edible organic oil is environmentally friendly, unlike some other inorganic oils that are used in practice.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3