Trends towards Biomimicry in Theranostics

Author:

Evangelopoulos Michael,Parodi Alessandro,Martinez Jonathan,Tasciotti Ennio

Abstract

Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.

Funder

National Institutes of Health

Cancer Prevention and Research Institute of Texas

Office of Research on Women's Health

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanoparticles to Abate Antibiotic Resistance During the Management of Dental Diseases;Nanotechnology Based Strategies for Combating Antimicrobial Resistance;2024

2. Promoting the bench-to-bedside translation of nanomedicines;Medical Review;2023-02-01

3. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine;International Journal of Molecular Sciences;2022-11-02

4. New anti-cancer explorations based on metal ions;Journal of Nanobiotechnology;2022-10-23

5. Recent advances in targeted drug delivery systems for resistant colorectal cancer;Cancer Cell International;2022-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3