Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers

Author:

Pelclova DanielaORCID,Zdimal Vladimir,Komarc Martin,Vlckova Stepanka,Fenclova Zdenka,Ondracek Jakub,Schwarz Jaroslav,Kostejn Martin,Kacer Petr,Dvorackova Stepanka,Popov Alexey,Klusackova Pavlina,Zakharov Sergey,Bello Dhimiter

Abstract

Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m3 to 1.840 mg/m3 during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 104 to 5.4 × 105 particles/cm3. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.

Funder

Univerzita Karlova v Praze

Ministerstvo Zdravotnictví Ceské Republiky

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3