Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing

Author:

Du Jianxun,Hao Peng

Abstract

The beetle elytra requires not only to be lightweight to make a beetle fly easily, but also to protect its body and hind-wing from outside damage. The honeycomb sandwich structure in the beetle elytra make it meet the above requirements. In the present work, the microstructures of beetle elytra, including biology layers and thin-walled honeycombs, are observed by scanning electron microscope and discussed. A new bionic honeycomb structure (BHS) with a different hierarchy order of filling cellular structure is established. inspired by elytra internal structure. Then the energy absorbed ability of different bionic models with the different filling cell size are compared by using nonlinear finite element software LS-DYNA (Livermore Software Technology Corp., Livermore, CA, USA). Numerical results show that the absorbed energy of bionic honeycomb structures is increased obviously with the increase of the filling cell size. The findings indicate that the bionic honeycomb structure with second order has an obviously improvement over conventional structures filled with honeycombs and shows great potential for novel clean energy absorption equipment.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3