Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells

Author:

Riley Rachel,O’Sullivan Rachel,Potocny Andrea,Rosenthal Joel,Day Emily

Abstract

Light-activated therapies are ideal for treating cancer because they are non-invasive and highly specific to the area of light application. Photothermal therapy (PTT) and photodynamic therapy (PDT) are two types of light-activated therapies that show great promise for treating solid tumors. In PTT, nanoparticles embedded within tumors emit heat in response to laser light that induces cancer cell death. In PDT, photosensitizers introduced to the diseased tissue transfer the absorbed light energy to nearby ground state molecular oxygen to produce singlet oxygen, which is a potent reactive oxygen species (ROS) that is toxic to cancer cells. Although PTT and PDT have been extensively evaluated as independent therapeutic strategies, they each face limitations that hinder their overall success. To overcome these limitations, we evaluated a dual PTT/PDT strategy for treatment of triple negative breast cancer (TNBC) cells mediated by a powerful combination of silica core/gold shell nanoshells (NSs) and palladium 10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene-based (Pd[DMBil1]-PEG750) photosensitizers (PSs), which enable PTT and PDT, respectively. We found that dual therapy works synergistically to induce more cell death than either therapy alone. Further, we determined that low doses of light can be applied in this approach to primarily induce apoptotic cell death, which is vastly preferred over necrotic cell death. Together, our results show that dual PTT/PDT using silica core/gold shell NSs and Pd[DMBil1]-PEG750 PSs is a comprehensive therapeutic strategy to non-invasively induce apoptotic cancer cell death.

Funder

University of Delaware Research Foundation

American Association of University Women

National Institutes of Health

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3