The Forecast of Streamflow through Göksu Stream Using Machine Learning and Statistical Methods

Author:

Ciner Mirac Nur1ORCID,Güler Mustafa2ORCID,Namlı Ersin3,Samastı Mesut4,Ulu Mesut5ORCID,Peker İsmail Bilal6ORCID,Gülbaz Sezar6ORCID

Affiliation:

1. Engineering Faculty, Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye

2. Engineering Faculty, Department of Engineering Sciences, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye

3. Engineering Faculty, Department of Industrial Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye

4. Turkish Institute of Management Science, TUBITAK Tusside Campus Gebze, 41400 Kocaeli, Türkiye

5. Occupational Health and Safety Department, Bandırma Onyedi Eylül University, Bandırma, 10250 Balıkesir, Türkiye

6. Engineering Faculty, Department of Civil Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye

Abstract

Forecasting streamflow in stream basin systems plays a crucial role in facilitating effective urban planning to mitigate floods. In addition to employing intricate hydrological modeling systems, machine learning and statistical techniques offer an alternative means for streamflow forecasts. Nonetheless, the precision and dependability of these methods are subjects of paramount importance. This study rigorously investigates the effectiveness of three distinct machine learning techniques and two statistical approaches when applied to streamflow data from the Göksu Stream in the Marmara Region of Turkey, spanning from 1984 to 2022. Through a comparative analysis of these methodologies, this examination aims to contribute innovative advancements to the existing methodologies used in the prediction of streamflow data. The methodologies employed include machine learning methods such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Machine (SVM) and statistical methods such as Simple Exponential Smoothing (SES) and Autoregressive Integrated Moving Average (ARIMA) model. In the study, 444 data points between 1984 and 2020 were used as training data, and the remaining data points for the period 2021–2022 were used for streamflow forecasting in the test validation period. The results were evaluated using various metrics, such as the correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE). Upon analyzing the results, it was found that the model generated using the XGBoost algorithm outperformed other machine learning and statistical techniques. Consequently, the models implemented in this study demonstrate a high level of accuracy in predicting potential streamflow in the river basin system.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3