Decoupling Agricultural Grey Water Footprint from Economic Growth in the Yellow River Basin

Author:

Zhang Xiaoyan1,Xiao Yunan1,Ramsey Thomas Stephen1,Li Songpu1ORCID,Peng Qingling2

Affiliation:

1. College of Economics & Management, China Three Gorges University, Yichang 443002, China

2. Business School, Hohai University, Nanjing 211100, China

Abstract

Decoupling agricultural economic growth from agricultural water pollution is of great importance to regional sustainable development. It is necessary to further explore the decoupling state and key driving factors connecting agricultural water pollution and agricultural economic growth on the basis of accurate measurement of agricultural water pollution. Accordingly, taking the Yellow River Basin (YRB) as the research object, this study combined the water footprint theory, the Logarithmic Mean Divisia Index (LMDI) model and the Tapio decoupling model (TDM) to conduct an in-depth decoupling analysis of the connection between the agricultural grey water footprint (AGWF) and agricultural economic growth in the YRB. Specifically, this study first calculated the AGWF of the YRB during 2016–2021 and objectively evaluated the water resource utilization in this region based on the AGWF. Then, the LMDI model was used to explore the driving factors of the AGWF in the YRB. Finally, the decoupling states between the AGWF and its driving factors with agricultural GDP (AGDP) were studied using the TDM. The main results are as follows: (1) The overall AGWF in the YRB showed a decreasing trend and a slow increase, decreasing by 5.39% in 2021 compared to 2016. (2) The primary promoting factor and inhibiting factor of AGWF reduction are the efficiency effect and agricultural economic effect, respectively. (3) The decoupling states of the AGWF and AGDP presented strong decoupling (SD) and then weak decoupling (WD) in the YRB during the research period. The decoupling states between the agricultural grey water footprint intensity (AGWFI) and AGDP changed from expansive negative decoupling (END) to SD. The decoupling state of population and AGDP remained SD. This study will contribute to alleviating agricultural water pollution in the YRB and help policymakers in water-stressed countries to formulate agricultural water management policies.

Funder

National Natural Science Foundation of China

National Social Foundation of China

the Ministry of Education (MOE) of China, Project of Humanities and Social Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3