Biofilm Degradation of Nontuberculous Mycobacteria Formed on Stainless Steel Following Treatment with Immortelle (Helichrysum italicum) and Common Juniper (Juniperus communis) Essential Oils

Author:

Peruč DoloresORCID,Broznić DaliborORCID,Maglica Željka,Marijanović Zvonimir,Karleuša Ljerka,Gobin IvanaORCID

Abstract

Nontuberculous mycobacteria, like other opportunistic premise plumbing pathogens, produce resistant biofilms on various surfaces in the plumbing system including pipes, tanks, and fittings. Since standard methods of water disinfection are ineffective in eradicating biofilms, research into new agents is necessary. Essential oils (EOs) have great potential as anti-biofilm agents. Therefore, the purpose of this research was to investigate the potential anti-biofilm effect of common juniper (Juniperus communis) and immortelle (Helichrysum italicum) EOs. Minimum inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC), and minimum effective concentrations of EOs on Mycobacterium avium, M. intracellulare, and M. gordonae were tested. Additionally, biofilms on the surface of a stainless steel disc were treated with single or mixed concentration of EOs, in order to investigate their degeneration via the bacterial count and confocal laser scanning microscopy (CLSM). H. italicum EO showed the strongest biofilm degradation ability against all Mycobacteria strains that were tested. The strongest effect in the biofilm degradation after the single or mixed applications of EOs was observed against M. gordonae, followed by M. avium. The most resistant was the M. intracellulare biofilm. Synergistic combinations of J. communis and H. italicum EOs therefore seem to be an effective substance in biofilm degradation for use in small water systems such as baths or hot tubs.

Funder

University of Rijeka

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3