Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas

Author:

Kim Sojung1ORCID,Kim Sumin2ORCID

Affiliation:

1. Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

2. Department of Environmental Horticulture & Landscape Architecture, College of Life Science & Biotechnology, Dankook University, Cheonan-si 31116, Republic of Korea

Abstract

Various types of photovoltaic (PV) modules have been developed to exploit solar energy, a major renewable energy resource. One of the popular types of PV modules is building-integrated photovoltaics (BIPV), which are PV modules used as building materials. The goal of this study is to conduct an economic feasibility analysis of BIPV on the rooftop of the Keith D. McFarland Science Building at Texas A&M University, Commerce, Texas. To this end, a polynomial regression (PR) model is developed to estimate the electricity generation quantity of solar energy in the subject area, where the maximum temperature is 104 °F (40 °C) in summer. The developed PR models are used to estimate the potential profit of BIPV on the rooftop of the subject building, and the results are compared with the profit of a green roof system at the subject building. The economic feasibility analyses show that the levelized cost of electricity (LCOE) of the green roof system is approximately 39.77% higher than that of the BIPV system at a discount rate of 5%. Thus, the BIPV system is more profitable than the green roof system; consequently, this research will contribute to the implementation of BIPV on building rooftops and the expansion of renewable energy use in preference to fossil fuel.

Funder

National Research Foundation of Korea (NRF) grant

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3