Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review

Author:

Song Yapeng12,Qiao Wei12ORCID,Zhang Jiahao12,Dong Renjie1ORCID

Affiliation:

1. College of Engineering, Biomass Engineering Center, China Agricultural University, Beijing 100083, China

2. Sanya Institute of China Agricultural University, Sanya 572025, China

Abstract

Anaerobic digestion is one of the most widely used treatment methods for animal manure. Chicken manure has high methane production potential and is thus a suitable substrate for biogas plants. However, high nitrogen content inhibits the metabolism of anaerobic microorganisms and thus hinders methane production from chicken manure. Enhancing the performance of anaerobic digestion for chicken manure is indeed a long-standing challenge. This review presents new insights into maintaining methanogens’ activities, the decomposition of acetate, and the dynamics of methanogenic pathways under high ammonia stress. This review also analyzed the possible strategies for alleviating ammonia inhibition effects, including supplementing trace elements, co-digestion with nitrogen-less materials, in-situ ammonia removal, and long adaptation of anaerobic consortia to ammonia stress. The insights obtained in this paper may provide helpful information for a better understanding of anaerobic digestion technology for chicken manure and other nitrogen-rich waste and wastewater.

Funder

Natural Science Foundation of Beijing, China

Key Research and Development Program of Hainan Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3