Laser Ablation Synthesis of Silver Nanoparticles for Polymer Nanocomposites

Author:

De Muijlder Thomas1ORCID,Voué Michel2ORCID,Leclère Philippe1ORCID

Affiliation:

1. Laboratory for Physics of Nanomaterials and Energy (LPNE), Research Institute for Materials Science and Engineering, University of Mons (UMONS), 20 Place du Parc, B-7000 Mons, Belgium

2. Physics of Materials and Optics Unit (LPMO), Research Institute for Materials Science and Engineering, University of Mons (UMONS), 20 Place du Parc, B-7000 Mons, Belgium

Abstract

Silver nanoparticles were synthesized via laser ablation in two different organic solvents (tetrahydrofuran and toluene). The influence of solvent choice on the production and behavior of silver nanoparticles dispersed in a polystyrene matrix was investigated. UV–Vis spectroscopy, ellipsometry and scanning probe microscopy techniques were used for characterization. The silver nanoparticles’ optical properties were modified by the existence of a core-shell structure appearing in toluene-ablated particles. For both solvents and, in particular, for the toluene case, the particles showed good dispersion in the matrix. Additionally, the interphase behavior of the doped polymer films was influenced by the synthesis process, affecting the mechanical and optical (dielectric) properties. The observed results for the nanocomposite are attributed to the formation of a core-shell structure around the particles directly due to the ablation in organic solvents. These findings contribute to the understanding of silver/polystyrene nanocomposites and offer opportunities for developing tailored functional materials by using laser ablation in liquids.

Funder

Fonds de la Recherche Scientifique (F.R.S.)—FNRS

FNRS Grands Equipements

FNRS Projet de Recherche

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3