A Multi-Strategy Integration Prediction Model for Carbon Price

Author:

Dong Hongwei1,Hu Yue1,Yang Yihe1,Jiang Wenjing1

Affiliation:

1. School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

Abstract

Carbon price fluctuations significantly impact the development of industries, energy, agriculture, and stock investments. The carbon price possesses the features of nonlinearity, non-stationarity, and high complexity as a time series. To overcome the negative impact of these characteristics on prediction and to improve the prediction accuracy of carbon price series, a combination prediction model named Lp-CNN-LSTM, which utilizes both convolutional neural networks and long short-term memory networks, has been proposed. Strategy one involved establishing distinct models of CNN-LSTM and LSTM to analyze high-frequency and low-frequency carbon price sequences; the combination of output was integrated to predict carbon prices more precisely. Strategy two comprehensively considered the economic and technical indicators of carbon price sequences based on the Pearson correlation coefficient, while the Multi-CNN-LSTM model selected explanatory variables that strongly correlated with carbon prices. Finally, a predictive model for a combination of carbon prices was developed using Lp-norm. The empirical study focused on China’s major carbon markets, including Hubei, Guangdong, and Shanghai. According to the error indicators, the performance of the Lp-CNN-LSTM model was superior to individual strategy prediction models. The Lp-CNN-LSTM model has excellent accuracy, superiority, and robustness in predicting carbon prices, which can provide a necessary basis for revising carbon pricing strategies, regulating carbon trading markets, and making investment decisions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3