Optimization of Nanofluid Flow and Temperature Uniformity in the Spectral Beam Splitting Module of PV/T System

Author:

Lu Liwei1,Tian Rui12,Han Xiaofei1

Affiliation:

1. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. Inner Mongolia Key Laboratory of Renewable Energy, Hohhot 010051, China

Abstract

The mass fraction of 0.01 wt% ZnO nanofluid was prepared via the two-step method. The measurement verifies that ZnO nanofluids have better transmission characteristics in the frequency division window range of 400–1200 nm. At the same time, it has good absorption characteristics in ultraviolet and near-infrared bands, which meets the application conditions of the spectral beam-splitting module of the PV/T system. A spectral beam-splitting module of the PV/T system was designed. The simplified physical model was established in ANSYS 14.0. The flow field and convective heat transfer were simulated for different arrangements of the interlayer inlet to obtain a more ideal and uniform temperature distribution to improve the system’s comprehensive efficiency. The results show that the fluid flow in the interlayer under case II is more uniform, and the temperature field distribution is better than other arrangements. Hence, this work could provide a reference for optimising nanofluid flow within a spectral beam-splitting module.

Funder

Inner Mongolia Science and Technology Major Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3