Optimization Study on Salinity Gradient Energy Capture from Brine and Dilute Brine

Author:

Gao Hailong1,Xiao Zhiyong2,Zhang Jie2,Zhang Xiaohan2,Liu Xiangdong2,Liu Xinying2,Cui Jin2,Li Jianbo13ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Technical Test Center, Shengli Oilfield Branch Company, Dongying 257029, China

3. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

The power conversion of salinity gradient energy (SGE) between concentrated brine from seawater desalination and seawater by reverse electrodialysis (RED) benefits energy conservation and also dilutes the discharge concentration to relieve the damage to coastal ecosystems. However, two key performance indexes of the maximum net power density and energy conversion efficiency for a RED stack harvesting the energy usually cannot reach the optimal simultaneously. Here, an optimization study on the two indexes was implemented to improve the performance of RED in harvesting the energy. A RED model for capturing the SGE between concentrated brine and seawater was constructed, and the correlation coefficients in the model were experimentally determined. Based on the model, the effects of a single variable (concentration, flow rate, temperature, thickness of the compartment, length of the electrode) on the performance of a RED stack are analyzed. The multi-objective optimization method based on the genetic algorithm was further introduced to obtain the optimal solution set, which could achieve the larger net power density and energy conversion efficiency with coordination. The ranges of optimal feed parameters and stack size were also obtained. The optimal flow velocity of the dilute solution and the concentration of the dilute solution are approximately 7.3 mm/s and 0.4 mol/kg, respectively.

Funder

National Natural Science Foundation of China

Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3