Short-Term Power Load Forecasting Based on PSO-Optimized VMD-TCN-Attention Mechanism

Author:

Geng Guanchen1,He Yu1,Zhang Jing1ORCID,Qin Tingxiang2,Yang Bin2

Affiliation:

1. College of Electrical Engineering, Guizhou University, Guiyang 550025, China

2. PowerChina Guizhou Engineering Co., Ltd., Guiyang 550001, China

Abstract

A new prediction framework is proposed to improve short-term power load forecasting accuracy. The framework is based on particle swarm optimization (PSO)-variational mode decomposition (VMD) combined with a time convolution network (TCN) embedded attention mechanism (Attention). The framework follows a two-step process. In the first step, PSO is applied to optimize the VMD decomposition method. The original electricity load sequence is decomposed, and the fitness function uses sample entropy to describe the complexity of the time series. The decomposed sub-sequences are combined with relevant features, such as meteorological data, to form the input sequence of the prediction model. In the second step, TCN is selected as the prediction model, and it is embedded with an attention mechanism to improve prediction accuracy. The above input sequence is fed to the model to obtain the PSO-VMD-TCN-Attention prediction framework. Load datasets and various prediction models validate the PSO-optimized VMD decomposition method and the TCN-Attention prediction model. Simulation results demonstrate that the PSO-optimized VMD decomposition method enhances the model’s prediction accuracy, and the TCN-Attention prediction model outperforms other prediction models in terms of prediction accuracy and ability.

Funder

the National Natural Science Foundation of China

The Science and Technology Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3