Fault Recovery Strategy for Power–Communication Coupled Distribution Network Considering Uncertainty

Author:

Hou Sizu1,Hou Yisu1,Li Baikui2,Wang Ziqi3

Affiliation:

1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China

2. CEPRI, China Electric Power Research Institute, Beijing 100192, China

3. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Abstract

In the face of multiple failures caused by extreme disasters, the power and communication sides of the distribution network are interdependent in the fault recovery process. To improve the post-disaster recovery efficiency of the distribution network, this paper proposes a coordinated optimization strategy for distribution network reconfiguration and repair, which integrates the power and communication aspects. First, the recovery process is divided into islanding–reconfiguration and dynamic emergency repair. The coupling relationship between power and communication is considered; that is, power failure may cause communication nodes to lose power, and communication failure may affect the effective operation of remote control devices. Based on this, the fault recovery process is optimized with the objective of maximizing load transfer and direct recovery while introducing a stochastic model predictive control method to handle the uncertainty of distributed power generation by rolling optimization of typical scenarios. Finally, the effectiveness of the proposed strategy is verified using an improved IEEE33-node distribution network system. The simulation results show that the proposed method can recover power to the maximum extent and reduce loss while ensuring the safe and stable operation of the distribution system.

Funder

North China Electric Power University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3