Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia

Author:

Porazzi PatriziaORCID,De Dominici Marco,Salvino JosephORCID,Calabretta Bruno

Abstract

Ph+ ALL is a poor-prognosis leukemia subtype driven by the BCR-ABL1 oncogene, either the p190- or the p210-BCR/ABL isoform in a 70:30 ratio. Tyrosine Kinase inhibitors (TKIs) are the drugs of choice in the therapy of Ph+ ALL. In combination with standard chemotherapy, TKIs have markedly improved the outcome of Ph+ ALL, in particular if this treatment is followed by bone marrow transplantation. However, resistance to TKIs develops with high frequency, causing leukemia relapse that results in <5-year overall survival. Thus, new therapies are needed to address relapsed/TKI-resistant Ph+ ALL. We have shown that expression of cell cycle regulatory kinase CDK6, but not of the highly related CDK4 kinase, is required for the proliferation and survival of Ph+ ALL cells. Comparison of leukemia suppression induced by treatment with the clinically-approved dual CDK4/6 inhibitor palbociclib versus CDK6 silencing revealed that the latter treatment was markedly more effective, probably reflecting inhibition of CDK6 kinase-independent effects. Thus, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that preferentially degrade CDK6 over CDK4. One compound termed PROTAC YX-2-107, which degrades CDK6 by recruiting the Cereblon ubiquitin ligase, markedly suppressed leukemia burden in mice injected with de novo or TKI-resistant Ph+ ALL. The effect of PROTAC YX-2-107 was comparable or superior to that of palbociclib. The development of CDK6-selective PROTACs represents an effective strategy to exploit the “CDK6 dependence” of Ph+ ALL cells while sparing a high proportion of normal hematopoietic progenitors that depend on both CDK6 and CDK6 for their survival. In combination with other agents, CDK6-selective PROTACs may be valuable components of chemotherapy-free protocols for the therapy of Ph+ ALL and other CDK6-dependent hematological malignancies.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3