Abstract
Various fungi including Cordyceps farinosa, an entomopathogenic fungus, can produce steroidal triterpenoids. Protostadienol (protosta-17(20)Z,24-dien-3β-ol) is a precursor of steroidal triterpenoid compounds. To identify oxidosqualene cyclase (OSC) gene candidates involved in triterpenoid biosynthesis, genome mining was performed using Illumina sequencing platform. In the sequence database, two OSC genes, CfaOSC1 and CfaOSC2, in the genome of C. farinosa were identified. Predicted amino-acid sequences of CfaOSC2 shared 66% similarities with protostadienol synthase (OSPC) of Aspergillus fumigatus. Phylogenetic analysis showed a clear grouping of CfaOSC2 in the OSPC clade. Function of CfaOSC2 was examined using a yeast INVSc1 heterologous expression system to endogenously synthesize 2,3-oxidosqualene. GC–MS analysis indicated that CfaOSC2 produced protosta-13(17),24-dien-3β-ol and protostadienol at a 5:95 ratio. Our results demonstrate that CfaOSC2 is a multifunctional triterpene synthase yielding a predominant protostadienol together with a minor triterpenoid. These results will facilitate a greater understanding of biosynthetic mechanisms underlying steroidal triterpenoid biosynthesis in C. farinosa and other fungi.
Funder
Rural Development Administration
Subject
Genetics(clinical),Genetics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献