Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions

Author:

Li Yichen,Xing ZhuoORCID,Yu Tao,Pao Annie,Daadi Marcel,Yu Y. Eugene

Abstract

Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Cancer Institute

The Children's Guild Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Reference58 articles.

1. Down Syndrome

2. Down syndrome

3. Down syndrome: the brain in trisomic mode

4. Down syndrome phenotypes: the consequences of chromosomal imbalance.

5. Segmental trisomy of murine chromosome 16: A new model system for studying Down syndrome;Davisson;Prog. Clin. Biol. Res.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3