Abstract
Quantifying the spatiotemporal variability of rainfall is the principal component for the assessment of the impact of climate change on the hydrological cycle. A better understanding of the quantification of variability and its trend is vital for water resources planning and management. Therefore, a multitude of studies has been dedicated to quantifying the rainfall variability over the years. Despite their importance for modelling rainfall variability, the studies mainly focused on the amount of rainfall and its spatial patterns. The studies investigating the spatial and temporal variability of rainfall across Central India, in general, and at multiscale, in particular, are limited. In this study, we used a Standardized Variability Index (SVI), based on information theory to investigate the spatiotemporal variability of rainfall. SVI is independent of the temporal scale, length of the data and can compare the rainfall variability at multiple timescales. Distinct spatial patterns were observed for information entropies at the monthly and seasonal scale. Grid points with statistically significant trends were observed and vary from monthly to seasonal scale. There is an increase in the variability of rainfall amount from South to North, indicating that spread of the rainfall is high in the South when compared to North of Central India. Trend analysis revealed there is changing behavior in the rainfall amount as well as rainy days, showing an increase in variability of rainfall over Central India, hence the high probability of occurrence of extreme events in the near future.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献