Deciphering the Neurosensory Olfactory Pathway and Associated Neo-Immunometabolic Vulnerabilities Implicated in COVID-Associated Mucormycosis (CAM) and COVID-19 in a Diabetes Backdrop—A Novel Perspective

Author:

Sharma MaryadaORCID,Vanam Hari PankajORCID,Panda Naresh K.,Patro Sourabha K.ORCID,Arora Rhythm,Bhadada Sanjay K.,Rudramurthy Shivaprakash M.,Singh Mini P.,Koppula Purushotham ReddyORCID

Abstract

Recent Mucorales-mediated outbreaks of infections and an association of fungal infection with COVID-19 cases, as observed for COVID-19-associated mucormycosis (CAM), have posed new challenges for the management of patients in critical care units. Diabetes and hyperglycemia are integrally linked to the severity of COVID-19, and uncontrolled diabetes mellitus and COVID-19 have recently been (independently or in combination) associated with the emergence of aggressive mucormycosis due to attendant defects in innate immune recognition pathways. Therefore, the identification of novel global cellular stressors upregulated during diabetes to understand the contribution of diabetes-associated metabolic vulnerabilities can help build a Metabolic-Stress-Associated Interactome (MSAI). This interactome can help reshape the metabolic inflammation (meta-inflammation) underlying the clinical manifestations of COVID-19 to facilitate the rational design of effective therapies for COVID-19 and CAM. Accordingly, an important area of research in COVID-19 therapeutics is engaged with identifying diabetes-associated pan-cellular stressors to understand their role in immune deregulation during COVID-19 and CAM, including investigating the distant trans-neuro-vascular–endocrine axis’s role in coordinating cellular-stress recognition, transmission, compensation, and decompensation during inter-organ regulation of metabolic homeostasis in diabetes. We reviewed clinico-pathological and laboratory data to propose potential diabetes-linked novel neo-vulnerabilities that can reshape the olfactory mucosal immune landscape during airway infections such as COVID-19 and CAM.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3