Abstract
Real-time tracking of pipeline inspection gauges (PIGs) is an important aspect of ensuring the safety of oil and gas pipeline inline inspections (ILIs). Transmitting and receiving extremely low frequency (ELF) magnetic signals is one of the preferred methods of tracking. Due to the increase in physical parameters of the pipeline including transportation speed, wall thickness and burial depth, the ELF magnetic signals received are short transient (1-second duration) and very weak (10 pT), making the existing above-ground-marker (AGM) systems difficult to operate correctly. Based on the short transient very weak characteristics of ELF signals studied with a 2-D finite-element method (FEM) simulation, a data fusion model was derived to fuse the envelope decay rates of ELF signals by a least square (LS) criterion. Then, a fast-decision-tree (FDT) method is proposed to estimate the fused envelope decay rate to output the maximized orthogonal signal power for the signal detection through a determined topology and a fast calculation process, which was demonstrated to have excellent real-time detection performance. We show that simulation and experimental results validated the effectiveness of the proposed FDT method, and describe the high-sensitivity detection and real-time implementation of a high-speed PIG tracking system, including a transmitter, a receiver, and a pair of orthogonal search coil sensors.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献