Effects of Stochastic Noises on Limit-Cycle Oscillations and Power Losses in Fusion Plasmas and Information Geometry

Author:

Hollerbach Rainer1ORCID,Kim Eun-jin2ORCID

Affiliation:

1. Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

2. Centre for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UK

Abstract

We investigate the effects of different stochastic noises on the dynamics of the edge-localised modes (ELMs) in magnetically confined fusion plasmas by using a time-dependent PDF method, path-dependent information geometry (information rate, information length), and entropy-related measures (entropy production, mutual information). The oscillation quenching occurs due to either stochastic particle or magnetic perturbations, although particle perturbation is more effective in this amplitude diminishment compared with magnetic perturbations. On the other hand, magnetic perturbations are more effective at altering the oscillation period; the stochastic noise acts to increase the frequency of explosive oscillations (large ELMs) while decreasing the frequency of more regular oscillations (small ELMs). These stochastic noises significantly reduce power and energy losses caused by ELMs and play a key role in reproducing the observed experimental scaling relation of the ELM power loss with the input power. Furthermore, the maximum power loss is closely linked to the maximum entropy production rate, involving irreversible energy dissipation in non-equilibrium. Notably, over one ELM cycle, the information rate appears to keep almost a constant value, indicative of a geodesic. The information rate is also shown to be useful for characterising the statistical properties of ELMs, such as distinguishing between explosive and regular oscillations and the regulation between the pressure gradient and magnetic fluctuations.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3