Vis-NIR Spectroscopy and Machine Learning Methods for the Discrimination of Transgenic Brassica napus L. and Their Hybrids with B. juncea

Author:

Sohn Soo-InORCID,Pandian SubramaniORCID,Oh Young-Ju,Zaukuu John-Lewis ZiniaORCID,Na Chae-Sun,Lee Yong-Ho,Shin Eun-Kyoung,Kang Hyeon-Jung,Ryu Tae-Hun,Cho Woo-Suk,Cho Youn-Sung

Abstract

The rapid advancement of genetically modified (GM) technology over the years has raised concerns about the safety of GM crops and foods for human health and the environment. Gene flow from GM crops may be a threat to the environment. Therefore, it is critical to develop reliable, rapid, and low-cost technologies for detecting and monitoring the presence of GM crops and crop products. Here, we used visible near-infrared (Vis-NIR) spectroscopy to distinguish between GM and non-GM Brassica napus, B. juncea, and F1 hybrids (B. juncea X GM B. napus). The Vis-NIR spectra were preprocessed with different preprocessing methods, namely normalization, standard normal variate, and Savitzky–Golay. Both raw and preprocessed spectra were used in combination with eight different chemometric methods for the effective discrimination of GM and non-GM plants. The standard normal variate and support vector machine combination was determined to be the most accurate model in the discrimination of GM, non-GM, and hybrid plants among the many combinations (99.4%). The use of deep learning in combination with Savitzky–Golay resulted in 99.1% classification accuracy. According to the findings, it is concluded that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used to distinguish between GM and non-GM B. napus, B. juncea, and F1 hybrids.

Funder

National Institute of Agricultural Sciences, Rural Development Administration, Korea.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3