Elastic Correlative Least-Squares Reverse Time Migration Based on Wave Mode Decomposition

Author:

Zheng Yue,Liu Youshan,Xu Tao,Li Zhiyuan

Abstract

The conventional elastic least-squares reverse time migration (LSRTM) generally inverts the parameter perturbation of the model rather than the reflectivity of reflected P- and S-modes, which leads to difficulty in directly interpreting the physical properties of the subsurface media. However, an accurate velocity model that is needed by the separation of seismic records of conventional LSRTM is usually unavailable in real data, which limits its application. In this study, we introduce a new practical correlative LSRTM (CLSRTM) scheme based on wave mode decomposition without amplitude and phase distortion, which frees from separation of seismic records. In this study, we deduced the migration and the de-migration operators using the decoupled P- and S-wave equations in heterogeneous media, which needs no extra wavefield decomposition in simulated data. To accelerate the convergence and improve the efficiency of the inversion, we adopted an analytical step-length formula that can be incidentally computed during the necessary de-migration process and the L-BFGS algorithm. Two numerical examples demonstrate that the proposed method can compensate the energy of deep structures, and generate clear images with balanced amplitudes and enhanced resolution even for the fault structures beneath the salt dome.

Funder

National Key Research and Development Program of China

China Earthquake Administration

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3