Abstract
Co-gasification of coal and biomass is an important way to reduce the consumption of fossil fuels and achieve the efficient utilization of biomass resources. Two kinds of biomass containing corn straw (CS) and poplar sawdust (PS) were blended with different coal. Then, the coal char was separated from the blended char after co-pyrolysis based on the difference in particle size. The structural properties, including alkali and alkaline earth metals (AAEMs), microcrystalline structures, and molecular structures of the char samples were analyzed. Gasification reactivity of the char was determined by thermogravimetric analyzer (TGA). Results indicated that K and Mg contents in biomass evaporated easily and deposited on coal char, resulting in the increase in those in coal char during co-pyrolysis, and then the AAEMs contents in coal char were determined by the AAEM species and contents in biomass. Meanwhile, the inhibition effect on the graphitization degree of coal char increased with increasing blend ratio. Likewise, the inhibition effect of CS was higher than that of PS at the same blend ratio. The catalytic activity of inorganic mineral played a much more important role in predicting gasification reactivity than graphitization degree, and then the combination of alkali index and stacking layer number was proposed to better predict the reactivity of coal char.
Funder
Natural Science Foundation of Shanxi Province
NSFC
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献