Correlation Degree and Clustering Analysis-Based Alarm Threshold Optimization

Author:

Zhang Guixin,Wang Zhenlei

Abstract

In industrial practice, excessive alarms and high alarm rates are mostly generated from unreasonable settings to variable alarm thresholds, which have become the significant causes of impact on operation stability and plant safety. A correlation degree and clustering analysis-based approach was presented to optimize the variable alarm thresholds in this paper. The correlation degrees of variables are first obtained by analyzing correlation relationships among them. Second, the variables are grouped according to the gray correlation coefficients and clustering analysis, given the weight for fault alarm rate (FAR) in each group. An objective function about the FAR, missed alarm rate (MAR), and the maximum acceptable FAR and MAR is then established with variable weight. Eventually, based on an optimization algorithm, the objective function can be optimized for obtaining the optimal alarm threshold. Cases study of the Tennessee Eastman (TE) industrial simulation process and an actual industrial ethylene production process, in comparison to the initial situation, show that the method can effectively reduce FAR according to correlation degrees among variables in the system, and decrease the number of alarms with reduction rates of 40.5% and 35.3%, respectively.

Funder

National Key R&D Program of China

National Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven-Based Intelligent Alarm Method of Ultra-Supercritical Thermal Power Units;Processes;2024-04-28

2. Optimal alarm trippoints and timers for avoiding false alarms *;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

3. Glass composition analysis and identification model based on variance test;Highlights in Science, Engineering and Technology;2023-02-28

4. Design of alarm thresholds and delay timers for non-IID process variables based on alarm durations;Process Safety and Environmental Protection;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3