A Population Balance Methodology Incorporating Semi-Mechanistic Residence Time Metrics for Twin Screw Granulation

Author:

Muddu Shashank Venkat,Ramachandran Rohit

Abstract

This work is concerned with the incorporation of semi-mechanistic residence time metrics into population balance equations for twin screw granulation processes to predict key properties. From the historical residence time and particle size data sourced, process parameters and equipment configuration information were fed into the system of equations where the input flow rates and model compartmentalization varied upon the parameters. Semi-mechanistic relations for the residence time metrics were employed to predict the particle velocities and dispersion coefficients in the axial flow direction of the twin screw granulation. The developed model was then calibrated for several experimental run points in each data-set. The predictions were evaluated quantitatively through the parity plots. The root mean square error (RMSE) was used as a metric to compare the degree of goodness of fit for different data-sets using the developed semi-mechanistic relations. In summary, this paper presents a more mechanistic but simplified approach of feeding residence time metrics into the population balance equations for twin screw granulation processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3