LRP-Based Design of Sustainable Recycling Network for Electric Vehicle Batteries

Author:

Hu Xiaping,Yan WeiORCID,Zhang Xumei,Feng Zhaohui,Wang YanORCID,Ying Baosheng,Zhang Hua

Abstract

Driven by energy shortages and climate concerns, the electric vehicles are popular around the world with their energy-saving and environmentally friendly advantages. As electric vehicle batteries (EVBs) mainly use lithium batteries, and the batteries’ performance decreases with the increase of charging times, a large number of batteries are entering the end-of-life (EoL) stage. Recycling and reuse of EVBs are effective ways to reduce environmental pollution and promote resources utilization and is now a top priority. Building a recycling network is the foundation of battery recycling. However, there are few studies on battery recycling networks and the construction of recycling networks is expensive, which impedes the sustainable development of electric vehicles. Based on this, recycling network design is critical for EVB recycling. This paper first analyzes three strategies to deal with used batteries: remanufacturing, reuse, and recycling materials. Secondly, an EVB recycling network model is developed with the objective of minimizing the total cost and carbon emissions. The model solves the problem of siting the centers in the network and the vehicle routing in the recycling process. Finally, the model was applied to GEM (a Chinese company dedicated to circular economy) and validated using a greedy algorithm. In addition, the results show that logistics costs and operating costs account for the majority of the recycling network total expense, at 48.45% and 31%, respectively. Therefore, if companies want to further reduce the cost of EVB recycling, they should reduce logistics costs and operating costs. In summary, this paper provides a decision-making approach for EVB recycling enterprises to carry out recycling and reuse, and offers advice on how to promote the sustainable economic and environmental development of the electric vehicle battery industry.

Funder

the National Natural Science Foundation of China

the open fund of Hubei key laboratory of mechanical transmission and manufacturing engi-neering at WUST

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3