A Network-Level Methodology for Evaluating the Hydraulic Quality Index of Road Pavement Surfaces

Author:

Bosurgi Gaetano,Pellegrino OrazioORCID,Ruggeri AlessiaORCID,Sollazzo GiuseppeORCID

Abstract

Traffic loads and environmental factors cause various forms of distress on road pavements (cracks, depressions, potholes, ruts, etc.). Depressions and ruts produce localized variations of longitudinal and cross slopes, which are very hazardous for drivers, especially during rain. In such conditions, these defects alter the surface water path, creating abnormal water accumulations and significant water film depths to induce aquaplaning risk. In current practice, in preliminary analysis phases and at the network scale, the control of road surfaces is carried out with expeditious techniques and with synthetic indicators, e.g., pavement condition index (PCI), through which a quality judgment related to the detected distresses on the pavement surface, is given. In truth, the detection of specific defects (ruts and depressions) should also include further analyses to evaluate the hydraulic efficiency of the carriageway related to their severity. Therefore, in this paper, a synthetic indicator called Hydraulic Condition Index (HCI) is proposed for evaluating the hydraulic quality of road pavement surfaces. This index is related to the hydrologic conditions of the site, the pavement characteristics, and the defects that can alter the flow of water on the carriageway, determining and increasing the risk of aquaplaning. The methodological framework is discussed by means of some numerical applications developed for different road typologies according to their functional classification. The final aim is to provide road agencies with another solution to evaluate road quality and ensure safer roads for users. The methodological framework for evaluating the HCI may be adopted by the road agencies for the network-scale priority ranking of road segments maintenance needs also involving safety traffic conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3