Abstract
Design and optimization of a magnetic fluid cored transformer are studied for high frequency applications. An easy and cheap fluid core is designed and used to decrease the eddy current and loses, thereby low conducting and paramagnetic features are added. The core exhibits both fluid and solid characteristics exerting high frequency modes in the fluid and low current due to the iron powder inside. The finite element analysis simulations are performed via COMSOL Multi-physics package for different mass fractions of iron powder. The maximum peak-to-peak voltage and power are found as 526 mV and 188.8 mW at 12 MHz from the simulations. 3D patterns prove that the magnetic flux and magnetization exhibit turbulence in the core, thereby localized magnetic values indicate an arbitrary attitude for various frequencies. Optimum mass fraction is found as 0.7, which is parallel with experimental results. The transformer operates between 11 MHz and 13.5 MHz optimally.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献