Supervised Dynamic Correlated Topic Model for Classifying Categorical Time Series

Author:

Pais Namitha1ORCID,Ravishanker Nalini1,Rajasekaran Sanguthevar2

Affiliation:

1. Department of Statistics, University of Connecticut, Storrs, CT 06269, USA

2. Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA

Abstract

In this paper, we describe the supervised dynamic correlated topic model (sDCTM) for classifying categorical time series. This model extends the correlated topic model used for analyzing textual documents to a supervised framework that features dynamic modeling of latent topics. sDCTM treats each time series as a document and each categorical value in the time series as a word in the document. We assume that the observed time series is generated by an underlying latent stochastic process. We develop a state-space framework to model the dynamic evolution of the latent process, i.e., the hidden thematic structure of the time series. Our model provides a Bayesian supervised learning (classification) framework using a variational Kalman filter EM algorithm. The E-step and M-step, respectively, approximate the posterior distribution of the latent variables and estimate the model parameters. The fitted model is then used for the classification of new time series and for information retrieval that is useful for practitioners. We assess our method using simulated data. As an illustration to real data, we apply our method to promoter sequence identification data to classify E. coli DNA sub-sequences by uncovering hidden patterns or motifs that can serve as markers for promoter presence.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3