Abstract
The present work proposes to locate harmonic frequencies that distort the fundamental voltage and current waves in electrical systems using the compressed sensing (CS) technique. With the compressed sensing algorithm, data compression is revolutionized, a few samples are taken randomly, a measurement matrix is formed, and according to a linear transformation, the signal is taken from the time domain to the frequency domain in a compressed form. Then, the inverse linear transformation is used to reconstruct the signal with a few sensed samples of an electrical signal. Therefore, to demonstrate the benefits of CS in the detection of harmonics in the electrical network of this work, power quality analyzer equipment (commercial) is used. It measures the current of a nonlinear load and issues its results of harmonic current distortion (THD-I) on its screen and the number of harmonics detected in the network; this equipment acquires the data based on the Shannon–Nyquist theorem taken as a standard of measurement. At the same time, an electronic prototype senses the current signal of the nonlinear load. The prototype takes data from the current signal of the nonlinear load randomly and incoherently, so it takes fewer samples than the power quality analyzer equipment used as a measurement standard. The data taken by the prototype are entered into the Matlab software via USB, and the CS algorithm run and delivers, as a result, the harmonic distortions of the current signal THD-I and the number of harmonics. The results obtained with the compressed sensing algorithm versus the standard measurement equipment are analyzed, the error is calculated, and the number of samples taken by the standard equipment and the prototype, the machine time, and the maximum sampling frequency are analyzed.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献