Abstract
This study presents a new interface for wellbore stability analysis, which visualizes and quantifies the stress condition around a wellbore at shear and tensile failure. In the first part of this study, the Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager shear failure criteria, and a tensile failure criterion, are applied to compare the differences in the critical wellbore pressure for three basin types with Andersonian stress states. Using traditional wellbore stability window plots, the Mohr–Coulomb criterion consistently gives the narrowest safe mud weight window, while the Drucker–Prager criterion yields the widest window. In the second part of this study, a new type of plot is introduced where the safe drilling window specifies the local magnitude and trajectories of the principal deviatoric stresses for the shear and tensile wellbore failure bounds, as determined by dimensionless variables, the Frac number (F) and the Bi-axial Stress scalar (χ), in combination with failure criteria. The influence of both stress and fracture cages increases with the magnitude of the F values, but reduces with depth. The extensional basin case is more prone to potential wellbore instability induced by circumferential fracture propagation, because fracture cages persists at greater depths than for the compressional and strike-slip basin cases.
Funder
Texas A and M Engineering Experiment Station, Texas A and M University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献