Evaluation of Lateral and Vertical Dimensions of Micromolds Fabricated by a PolyJet™ Printer

Author:

Vijayan Sindhu,Parthiban Pravien,Hashimoto MichinaoORCID

Abstract

PolyJet™ 3D printers have been widely used for the fabrication of microfluidic molds to replicate castable resins due to the ease to create microstructures with smooth surfaces. However, the microstructures fabricated by PolyJet printers do not accurately match with those defined by the computer-aided design (CAD) drawing. While the reflow and spreading of the resin before photopolymerization are known to increase the lateral dimension (width) of the printed structures, the influence of resin spreading on the vertical dimension (height) has not been fully investigated. In this work, we characterized the deviations in both lateral and vertical dimensions of the microstructures printed by PolyJet printers. The width of the printed structures was always larger than the designed width due to the spreading of resin. Importantly, the microstructures designed with narrow widths failed to reproduce the intended heights of the structures. Our study revealed that there existed a threshold width (wd′) required to achieve the designed height, and the layer thickness (a parameter set by the printer) influenced the threshold width. The thresholds width to achieve the designed height was found to be 300, 300, and 500 μm for the print layer thicknesses of 16, 28, and 36 μm, respectively. We further developed two general mathematical models for the regions above and below this threshold width. Our models represented the experimental data with an accuracy of more than 96% for the two different regions. We validated our models against the experimental data and the maximum deviation was found to be <4.5%. Our experimental findings and model framework should be useful for the design and fabrication of microstructures using PolyJet printers, which can be replicated to form microfluidic devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing 3D printed microfluidics with computational methods for sweat analysis;Microchimica Acta;2024-02-27

2. The Role of 3D Printing Technologies in Soft Grippers;Advanced Materials;2023-12-03

3. Dimensional-Shape Verification of a Selected Part of Machines Manufactured by Additive Techniques;Advances in Science and Technology Research Journal;2023-02-01

4. Wettability and Surface Roughness of Parylene C on Three-Dimensional-Printed Photopolymers;Materials;2022-06-11

5. A review on polyjet 3D printing of polymers and multi-material structures;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3