Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide

Author:

Song Young SuhORCID,Park Byung-GookORCID

Abstract

For improving retention characteristics in the NOR flash array, aluminum oxide (Al2O3, alumina) is utilized and incorporated as a tunneling layer. The proposed tunneling layers consist of SiO2/Al2O3/SiO2, which take advantage of higher permittivity and higher bandgap of Al2O3 compared to SiO2 and silicon nitride (Si3N4). By adopting the proposed tunneling layers in the NOR flash array, the threshold voltage window after 10 years from programming and erasing (P/E) was improved from 0.57 V to 4.57 V. In order to validate our proposed device structure, it is compared to another stacked-engineered structure with SiO2/Si3N4/SiO2 tunneling layers through technology computer-aided design (TCAD) simulation. In addition, to verify that our proposed structure is suitable for NOR flash array, disturbance issues are also carefully investigated. As a result, it has been demonstrated that the proposed structure can be successfully applied in NOR flash memory with significant retention improvement. Consequently, the possibility of utilizing HfO2 as a charge-trapping layer in NOR flash application is opened.

Funder

Korea Military Academy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3