Land Use Changes in the Zoige Plateau Based on the Object-Oriented Method and Their Effects on Landscape Patterns

Author:

Shen Ge,Yang Xiuchun,Jin Yunxiang,Luo Sha,Xu Bin,Zhou Qingbo

Abstract

Land use/land cover change (LUCC) is the most direct driving force of landscape pattern change. The Zoige Plateau is a natural ecosystem with the largest high-altitude swamp wetland in China and its land use pattern has undergone great changes in recent years, but how the changes of each land use type affect the landscape pattern is uncertain. Here, we used the object-oriented method to extract land use information in 2015. Then, combined with land use data, the land use change characteristics from 2000 to 2015 were analyzed. We used the correlation analysis method to analyze the effects of land use changes on landscape pattern systematically. Three key conclusions were reached. (1) Land use information for the Zoige Plateau could be extracted with high accuracy by combining the object-oriented method and support vector machine (SVM). The overall accuracy was 93.2% and the Kappa coefficient was 0.889. (2) The comprehensive dynamic degree of land use was the highest from 2010 to 2015. From 2000 to 2015, the wetland area decreased the fastest because 57.05% of the wetlands were transferred out. Construction land increased the fastest, and the transferred in area from grassland and farmland were the main reason. (3) The effects of unused land, farmland, and construction land on the overall landscape pattern were stronger than that of the other types, among which farmland had the most significant impact (with a correlation coefficient of 0.959, p < 0.001). The change of unused land was the most highly significant factor associated with the landscape area pattern, and both the water body and unused land showed strong correlations with landscape shape pattern change. This suggested that the effects of land use types occupying a relatively small area on the landscape pattern were intensified. This study will provide guidance for the environmental management of local land resources and other natural ecosystem areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3