Upstream GPS Vertical Displacement and its Standardization for Mekong River Basin Surface Runoff Reconstruction and Estimation

Author:

Fok Hok SumORCID,Zhou Linghao,Liu Yongxin,Ma Zhongtian,Chen Yutong

Abstract

Surface runoff (R), which is another expression for river water discharge of a river basin, is a critical measurement for regional water cycles. Over the past two decades, river water discharge has been widely investigated, which is based on remotely sensed hydraulic and hydrological variables as well as indices. This study aims to demonstrate the potential of upstream global positioning system (GPS) vertical displacement (VD) and its standardization to statistically derive R time series, which has not been reported in recent literature. The correlation between the in situ R at estuaries and averaged GPS-VD and its standardization in the river basin upstream on a monthly temporal scale of the Mekong River Basin (MRB) is examined. It was found that the reconstructed R time series from the latter agrees with and yields a similar performance to that from the terrestrial water storage based on gravimetric satellite (i.e., Gravity Recovery and Climate Experiment (GRACE)) and traditional remote sensing data. The reconstructed R time series from the standardized GPS-VD was found to have a 2–7% accuracy increase against those without standardization. On the other hand, it is comparable to data that are obtained by the Palmer drought severity index (PDSI). Similar accuracies are exhibited by the estimated R when externally validated through another station location with in situ time series. The comparison of the estimated R at the entrance of river delta against that at the estuaries indicates a 1–3% relative error induced by the residual ocean tidal effect at the estuary. The reconstructed R from the standardized GPS-VD yields the lowest total relative error of less than 9% when accounting for the main upstream area of the MRB. The remaining errors may be the result of the combined effect of the proposed methodology, remaining environmental signals in the data time series, and potential time lag (less than a month) between the upstream MRB and estuary.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3