Retrieving Foliar Traits of Quercus garryana var. garryana across a Modified Landscape Using Leaf Spectroscopy and LiDAR

Author:

Hacker Paul W.,Coops Nicholas C.ORCID,Townsend Philip A.,Wang Zhihui

Abstract

Understanding the ecological effects of human activities on an ecosystem is integral to the implementation of conservation management plans. The plasticity of plant functional traits presents an opportunity to examine the capacity for intraspecific functional trait variations to be indicators of anthropogenic landscape modifications. The presence of intraspecific trait variation would indicate that plants of a single species could to be used to evaluate and map functional diversity, a common metric used to measure biodiversity. This study uses leaf spectroscopy, light detection and ranging (LiDAR) and partial least squares regression (PLSR) to examine the intraspecific variation of functional traits in a population of 40 Quercus garryana experiencing varying levels of anthropogenic influence at the site level (<0.3 km2) in Duncan, B.C., Canada. These individuals vary in their spatial relationship to roads, agricultural land use change and an encroaching Coastal Douglas-fir forest. A total of 14 functional traits were estimated using pre-determined PLSR coefficients from a multi-species dataset. LiDAR data for each tree and were organized into functional categories based on their influence of plant lifeform, leaf growth or leaf structure. Principal components analysis was performed on each functional category to determine the relative influence of each trait. Results show that leaf growth and lifeform functional trait categories express significant variation in relation to three anthropogenic landscape modifications, while traits associated to leaf structure only varied between land use types (p = 0.05). Diameter at breast height (DBH), mass-based chlorophyll and leaf mass per area (LMA) showed the strongest variation across treatments. These findings support the hypothesis that trait variation exists in small populations of the same species and illustrate that spectroscopy can be used to indirectly sense land use via the leaf functional traits of a single tree species.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3