Abstract
The Geostationary Ocean Color Imager (GOCI) sensor, with high temporal and spatial resolution (eight images per day at an interval of 1 hour, 500 m), is the world’s first geostationary ocean color satellite sensor. GOCI provides good data for ocean color remote sensing in the Western Pacific, among the most turbid waters in the world. However, GOCI has no shortwave infrared (SWIR) bands making atmospheric correction (AC) challenging in highly turbid coastal regions. In this paper, we have developed a new AC algorithm for GOCI in turbid coastal waters by using quasi-synchronous Visible Infrared Imaging Radiometer Suite (VIIRS) data. This new algorithm estimates and removes the aerosol scattering reflectance according to the contributing aerosol models and the aerosol optical thickness estimated by VIIRS’s near-infrared (NIR) and SWIR bands. Comparisons with other AC algorithms showed that the new algorithm provides a simple, effective, AC approach for GOCI to obtain reasonable results in highly turbid coastal waters.
Funder
Guangzhou Science and Technology Program key projects
National Natural Science Foundation of China
National Key Research and Development Projects
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献